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ABSTRACT
Introduction Silver nanoparticles (AgNPs) can modulate microalgal metabolism in a dose-dependent and 

stage-specific manner. Haematococcus lacustris, a key astaxanthin-producing microalga, is highly 
sensitive to environmental stressors that regulate the transition from the green vegetative stage to 
the red aplanospore stage.

Material and methods The effects of 10 nm and 20 nm citrate-stabilized AgNPs (0.01–5 mg L-1) were assessed on biomass, 
cellular metabolites, photosynthetic pigments, lipids, and astaxanthin. Nanoparticles were intro-
duced on day 3, with analyses performed at the end of the green (day 9) and red stages (day 16).

Results Low to moderate AgNPs concentrations (0.01–1 mg L-1) increased biomass, proteins, carbohydrates, 
and lipids during the green stage, while 5 mg L-1 inhibited growth and pigments and elevated MDA 
levels. In the red stage, all concentrations reduced final biomass; however, 10 nm AgNPs at 0.01–
0.5 mg L-1 boosted astaxanthin (by up to ~30%) and lipids (by up to ~96%). Higher doses, along with 
all 20 nm AgNP treatments, suppressed astaxanthin accumulation.

Conclusions H. lacustris exhibits a hormetic response to AgNPs: mild exposure stimulates key metabolites, while 
higher concentrations become inhibitory. Nanoparticle size, dose, and timing are crucial for pre-
cisely directing metabolic pathways and improving astaxanthin yield.

Keywords Haematococcus lacustris, silver nanoparticles, astaxanthin, metabolites, oxidative stress, hormesis.

ASTAXANTINA ȘI PRODUCEREA METABOLIȚILOR CELULARI ÎN HAEMATOCOCCUS LACUSTRIS  
EXPUS LA NANOPARTICULE DE ARGINT

Introducere Nanoparticulele de argint (AgNPs) pot modula metabolismul microalgelor într-un mod dependent 
de concentrație și de stadiul fiziologic. Haematococcus lacustris, un important producător de as-
taxantină, prezintă o  sensibilitate sporită la factorii de stres care reglează tranziția de la  faza de 
celule verzi vegetative la  cea de aplanospori roșii.

Material și metode Au fost evaluate efectele AgNP-urilor de 10 nm și 20 nm (0,01–5 mg L-1) asupra biomasei, metaboli-
ților celulari, pigmenților fotosintetici, lipidelor și astaxantinei. Nanoparticulele au fost adăugate în 
ziua a 3-a, iar analizele au fost efectuate la sfârșitul fazei de celule vegetative (ziua a 9-a) și al fazei 
de aplanospori (ziua a 16-a).

Rezultate Concentrațiile mici și moderate de AgNPs (0,01–1 mg L-1) au stimulat biomasa, proteinele, carbohi-
drații și lipidele în faza de celule vegetative, în timp ce 5 mg L-1au inhibat creșterea și conținutul de 
pigmenți și au crescut nivelul MDA. În faza de aplanospori, toate concentrațiile au redus biomasa 
finală; totuși, AgNP de 10 nm la 0,01–0,5 mg L-1 au intensificat sinteza de astaxantină (până la ~30%) 
și de lipide (până la ~96%). Dozele mai mari și toate tratamentele cu AgNPs de 20 nm au redus 
semnificativ astaxantina.

Concluzii H. lacustris manifestă un răspuns hormetic la AgNPs: expunerea moderată stimulează metaboli-
ții valoroși, în timp ce concentrațiile ridicate devin inhibitoare. Dimensiunea nanoparticulelor, doza 
aplicată și durata expuneriit constituie factori determinanți în modularea controlată a metabolis-
mului celular și în optimizarea producției de astaxantină.

Cuvinte-cheie Haematococcus lacustris, nanoparticule de argint, astaxantină, metaboliți, stres oxidativ, răspuns 
hormetic.
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INTRODUCTION 
Nanotechnology is among the most dynamic frontiers of modern sci-
ence, with applications expanding from engineering to biomedicine. 
This growth is driven by the unique physicochemical properties of 
nanomaterials, including nanoscale dimensions, a high specific surface 
area, and enhanced reactivity (1, 2). As their use has broadened, so have 
concerns regarding their toxicological impact, as numerous studies in-
dicate that some nanomaterials can induce oxidative stress, cellular 
damage, and systemic toxicity, particularly at high concentrations or in 
unsuitable formulations (3). At the same time, a deeper understanding 
of their mechanisms of action has shifted the focus from simply avoid-
ing toxicity toward exploring their potential for the controlled, bene-
ficial stimulation of cellular processes (4, 5). This new perspective has 
opened new nanobiotechnological applications, including those involv-
ing microalgae, where nanoparticles may modulate oxidative stress 
and enhance the biosynthesis of high-value metabolites such as lipids, 
carotenoids, proteins, and exopolysaccharides (6–8). 

Despite increasing interest, the biological responses of microalgae to 
nanoparticle exposure remain poorly understood. These responses 
are highly variable, depending critically on nanoparticle type, con-
centration, and the physiological state of the organism. (6, 8, 9). Among 
different nanomaterials, silver nanoparticles (AgNPs) are particularly 
noteworthy because of their dual biological effects, where they can 
either stimulate or inhibit cellular processes, depending on size, con-
centration, and surface properties. When carefully controlled, mod-
erate oxidative stress induced by AgNPs may act as a metabolic signa, 
promoting the synthesis of bioactive compounds (8, 10, 11).

The green microalga Haematococcus lacustris (formerly Haematococ-
cus pluvialis) is a model organism in phycobiotechnology due to its 
exceptional capacity to accumulate astaxanthin, a carotenoid with 
strong antioxidant properties and significant pharmaceutical, nutra-
ceutical, cosmetic, and aquaculture relevance (12–16). In addition to 
astaxanthin, H. lacustris produces considerable amounts of lipids, 
proteins, and carbohydrates, further enhancing its biotechnological 
value (12, 13).

The life cycle of Haematococcus lacustris consists of two distinct mor-
phological and physiological stages: a vegetative green stage and a red 
aplanospore (or cyst) stage, with the latter characterized by the exten-
sive accumulation of carotenoids. These stages also differ structurally. 
Green vegetative cells possess a relatively fragile cell wall that allows 
the direct extraction of intracellular components. In contrast, red 
aplanospores develop a thick, resilient cell wall that, while providing 
protection, substantially complicates metabolite extraction, requir-
ing specific cell disruption or pretreatment procedures. Due to these 
structural and functional differences, each stage must be evaluated 
separately, when assessing nanoparticle effects on growth and metab-
olite biosynthesis – particularly in the case of astaxanthin (13, 17–21).

In this context, this study examines the impact of silver nanoparticles 
on astaxanthin accumulation and cellular metabolite profiles in Hae-
matococcus lacustris  CNMN-AV-05, specifically comparing its green 
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and red developmental stages. The responses to 10 and 20 nm AgNPs 
were evaluated by measuring biomass, major biochemical compo-
nents, lipids, and astaxanthin, in order to clarify how nanoparticle 
exposure influences growth and metabolism across the two develop-
mental stages.

MATERIALS AND METHODS

Microalgal Strain and Culture Conditions 
The green microalga Haematococcus lacustris CNMN-AV-05 (NCNM, 
Technical University of Moldova) was used in all experiments. Start-
er cultures were maintained as aplanospores under continuous illu-
mination (150 µmol·m⁻²·s⁻¹, measured using a quantum light meter, 
LI-250A, LI-COR Biosciences, USA) at 26–28 °C in the mineral medium 
described below.

For experimental assays, cultures were inoculated at 0.2 g DW·L-1 in 
50 mL working volumes (100 mL Erlenmeyer flasks) and cultivated 
under continuous light (75 µmol·m⁻²·s⁻¹) with shaking twice daily 
during 10 min. The medium pH remained stable (6.8–7.0). The mineral 
medium contained (g·L-1): NaNO₃ 0.3; KH₂PO₄ 0.02; K₂HPO₄ 0.08; Mg-
SO₄·7H₂O 0.01; ZnSO₄·7H₂O 0.0001; MnSO₄·5H₂O 0.0015; CuSO₄·5H₂O 
0.00008; H₃BO₃ 0.0003; (NH₄)₆Mo₇O₂₄·4H₂O 0.0003; Fe₂(SO₄)₃ 0.013; 
EDTA 0.0075.

Silver Nanoparticles 
Citrate-stabilized silver nanoparticles (AgNPs) of 10 nm (Lot MKCK8345) 
and 20 nm (Lot MKCM2276) were obtained from Sigma-Aldrich (Opti-
cal Density (OD) = 1; Polydispersity Index (PDI) < 0.2; TEM-verified size 
±0.2 nm). Prior to use, stock suspensions were vortexed and briefly 
sonicated, then diluted in sterile medium immediately before addi-
tion to cultures.

After introduction, AgNPs remained visually stable throughout the 
experiment, with no sedimentation, flocculation; given the low work-
ing concentrations, no optical effects were expected. Seven concentra-
tions were tested: 0, 0.01, 0.05, 0.1, 0.5, 1.0, and 5 mg·L-1. Nanoparticles 
were added on day 3, at the transition from germination to the green 
vegetative stage.

Experimental Design
Two experimental series were conducted – one for each AgNP size (10 
nm and 20 nm).

For each concentration, three independent replicates were prepared 
for each sampling time.

Biomass was harvested at day 9 – end of the green vegetative stage, 
and at day 16 – end of the red aplanospore stage (after increasing illu-
mination to 150 µmol·m⁻²·s⁻¹ from day 14 to induce carotenoid accu-
mulation).
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After harvesting, biomass was washed with distilled water and re-
suspended to a standard concentration of 10 mg·mL-1 for biochemi-
cal assays.

Sample Preparation for Biochemical Analyses 
Due to structural differences between stages, biomass was processed 
as follows: 

a)	Green stage (motile cells) – biomass subjected to three freeze–thaw 
cycles (–20 °C / +25 °C) to disrupt cells; homogenates used for protein, 
carbohydrate, pigment, lipid, and MDA assays.

b)	Red stage (aplanospores) – aplanospores possess a thick, resistant 
wall; therefore biomass was subjected to acid hydrolysis (0.1 M HCl, 
90 °C, 10 min), washed 3× with water, the pellet was used for astaxan-
thin extraction, residual material was used for lipid quantification.

Biomass Quantification
Biomass concentration was determined spectrophotometrically at 680 
nm (green cells) and 565 nm (red aplanospores). Calibration curves 
were constructed separately for each cell type within the OD range 
0.01–0.40 (7-point curves; R² > 0.99), and samples were diluted with 
fresh medium to fall within this linear interval.

Biochemical Analyses
Biochemical assays were performed on biomass standardized to 10 
mg/mL, with cell disruption adapted to each stage: freeze–thaw cycles 
for green cells and mild acid hydrolysis (0.1 M HCl, 90°C, 10 min) for 
aplanospores.

Protein content was measured using a modified Folin–Ciocalteu assay 
(22). Absorbance was recorded at 750 nm, and concentrations were 
calculated from a BSA calibration curve.

Total carbohydrates were quantified by the anthrone method, heating 
samples with anthrone–H₂SO₄ and reading absorbance at 620 nm, us-
ing a glucose calibration curve.

Pigments (chlorophylls and carotenoids) were extracted in 96% eth-
anol, and absorbance at 649, 665, and 450 nm was used to calculate 
chlorophyll a, chlorophyll b, and total carotenoids according to Licht-
enthaler (1987) (23).

Total lipids were quantified by the phosphovanillin colorimetric 
method (24). Green-stage biomass was extracted with chloroform–
ethanol; for red-stage biomass, lipids were measured from the res-
idue remaining after astaxanthin extraction. Absorbance was mea-
sured at 520 nm, and lipid content was determined using an oleic 
acid standard curve.

Lipid peroxidation was assessed via the Thiobarbituric Acid-Malondial-
dehyde (TBA–MDA) assay, measuring absorbance at 535 nm (corrected 
at 600 nm). MDA content was calculated using ε = 1.56 × 10⁵ M⁻¹·cm⁻¹.
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Astaxanthin was extracted from hydrolyzed aplanospores with 96% 
ethanol, and absorbance at 478 nm was converted to concentration 
using a calibration curve of pure astaxanthin (≥97%).

Statistical Analysis
All experiments were performed in triplicate, and results are ex-
pressed as mean ± standard deviation (SD). Statistical differences be-
tween treatments and controls were assessed using one-way ANOVA, 
followed by Welch’s t-test for unequal variances. Differences were 
considered statistically significant at p < 0.05.

RESULTS
Effects of AgNPs on Biomass and Cellular Metabolites of 
Haematococcus lacustris in the Green Stage
Exposure of H. lacustris to silver nanoparticles produced clear, con-
centration-dependent changes in biomass and cellular metabolite 
content at the end of the green growth phase (fig. 1–4). In terms of 
growth (fig. 1), both 10 nm and 20 nm AgNPs stimulated biomass ac-
cumulation at low and moderate concentrations.
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Figure 1. Biomass (g L-1) of Haematococcus lacustris accumulated during the green stage  
following exposure to 10 nm and 20 nm AgNPs at various concentrations (mg L-1).  

0 – control; data are presented as mean ± SD (n = 3).  
Statistical significance is indicated relative to the control: * – p < 0.05.

For 10 nm AgNPs, 0.01–0.1 mg L-1 increased biomass by ~14–16%, while 
0.5–1.0 mg L-1produced stronger stimulation, up to ~26–28% above 
the control. A similar pattern was observed for 20 nm AgNPs, with 
biomass increases of ~14% at 0.01 mg L-1 and ~27% at 0.5–1.0 mg L-1. 
In contrast, the highest concentration (5.0 mg L-1) inhibited growth, 
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reducing biomass by ~30–33% for both nanoparticle sizes. Thus,  
AgNPs enhanced green-stage biomass within an optimal concentra-
tion window, while excessive doses were clearly detrimental.

Protein and carbohydrate contents also responded positively to AgNP 
treatment, although with different sensitivities (fig. 2). For proteins, all 
tested concentrations of both 10 nm and 20 nm AgNPs led to significant 
increases relative to the control. In cultures treated with 10 nm AgNPs, 
protein content rose by ~9–16%, with the strongest effects at 0.1–1.0 mg 
L-1. For 20 nm AgNPs, the stimulatory effect was more pronounced, with 
increases of ~14–25% in the same concentration range, indicating that 
both size and dose influence protein accumulation.
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Figure 2. Protein and carbohydrate content (% of biomass) in Haematococcus lacustris  
collected at the end of the green phase after exposure to 10 nm and 20 nm AgNPs (mg L-1).  

0 = control; mean ± SD (n = 3); * p < 0.05 vs. control.

Carbohydrates displayed an even more marked stimulation. In the 
presence of 10 nm AgNPs, carbohydrate content increased at all con-
centrations, with moderate rises (~16%) at 0.01 and 5.0 mg L-1 and 
stronger enhancement (up to ~65%) at 0.05–1.0 mg/L. Treatment with 
20 nm AgNPs similarly elevated carbohydrate levels at 0.05–5.0 mg L-1, 
with maximal increases of ~62–68% at 0.5–1.0 mg L-1, while 0.01 mg L-1 
induced no detectable change. Overall, these results indicate that Ag-
NPs, particularly in the intermediate range of 0.05–1.0 mg L-1, strongly 
stimulate primary carbon storage in the green stage.

The pigment profile was more sensitive to AgNP exposure, especially 
at higher concentrations (fig. 3). For 10 nm AgNPs, total chlorophyll 
content remained comparable to the control at 0.01–0.5 mg L-1, but de-
clined by ~16% at 1.0 mg L-1 and ~29% at 5.0 mg L-1. In cultures treated 
with 20 nm AgNPs, 0.01–0.05 mg L-1 had little effect on chlorophylls, 
whereas 0.1–5.0 mg L-1 induced a progressive reduction, reaching 
~31% at 5.0 mg L-1.
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Figure 3. Total chlorophyll and carotenoid content (% biomass) in Haematococcus lacustris  
at the end of the green phase following exposure to 10 nm and 20 nm AgNPs (mg L-1).  

0 = control; mean ± SD (n = 3); * p < 0.05.

Total carotenoids followed a similar pattern. For 10 nm AgNPs, con-
centrations up to 0.5 mg L-1 did not substantially modify carotenoid 
levels, but 1.0 mg L-1 and 5.0 mg L-1 caused strong decreases of ~42% 
and ~70%, respectively. With 20 nm AgNPs, slight changes were ob-
served at 0.01–0.05 mg L-1, while 0.1–5.0 mg L-1 produced pronounced 
reductions (about 20–61%). These trends indicate that, unlike proteins 
and carbohydrates, photosynthetic pigments are relatively stable un-
der low AgNP doses but highly susceptible to inhibition at ≥1.0 mg L-1.

Lipid content and malondialdehyde (MDA) levels, used as indicators of 
carbon allocation and oxidative stress, are shown in Figure 4. In the 
presence of 10 nm AgNPs, lipid content increased moderately (~12%) at 
0.05–0.1 mg L-1 and more strongly (~31–42%) at 0.5–5.0 mg L-1. For 20 nm 
AgNPs, significant lipid stimulation (~24–65%) was observed mainly at 
0.5–5.0 mg L-1, whereas lower concentrations had little effect.
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Figure 4. Lipid content (% biomass) and MDA levels (mM mL-1) in Haematococcus lacustris  
at the end of the green stage following exposure to 10 nm and 20 nm AgNPs (mg L-1).  

0 = control; mean ± SD (n = 3); * p < 0.05 vs. control.
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MDA levels remained close to control values at 0.01–0.5 mg L-1 for 
both nanoparticle sizes, indicating that these doses did not induce 
marked lipid peroxidation. However, at 1.0–5.0 mg L-1, MDA increased 
substantially: for 10 nm AgNPs by ~42–47%, and for 20 nm AgNPs by 
~6–46%. Thus, high AgNP concentrations that suppress pigments and 
growth are also associated with oxidative damage, whereas low–mod-
erate doses stimulate biomass and metabolite accumulation without 
clear signs of stress.

Effects of AgNPs on Biomass, Astaxanthin, and Lipids  
in the Red Aplanospore Stage
At the red cyst (aplanospore) stage, the impact of AgNPs differed from 
that observed in the green phase, reflecting the shift towards stress-in-
duced carotenoid and lipid accumulation (fig. 5, 6).

Biomass accumulation was consistently inhibited by AgNP exposure at 
the end of the cultivation cycle (fig. 5). Even the lowest concentrations 
(0.01–0.1 mg L-1) caused moderate declines of ~5–7% for 10 nm AgNPs 
and ~4–8% for 20 nm AgNPs. At higher doses (0.5–5.0 mg L-1), the re-
duction in aplanospore biomass became more pronounced, reaching 
~10–35% for 10 nm particles and ~14–40% for 20 nm particles. These 
results suggest that although AgNPs can transiently stimulate biomass 
in the green stage, their prolonged presence ultimately limits final 
biomass at the red stage.
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Figure 5. Biomass (g/L) of Haematococcus lacustris at the red cyst (aplanospore) stage following 
exposure to 10 nm and 20 nm AgNPs (mg L-1). 0 = control; mean ± SD (n = 3); * p < 0.05 vs. control.

Astaxanthin accumulation in aplanospores exhibited a clear biphasic, 
concentration-dependent response (fig. 6). In cultures treated with 10 
nm AgNPs, low concentrations (0.01–0.5 mg L-1) stimulated astaxan-
thin biosynthesis, with increases of up to ~30% relative to the con-
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trol, the highest value being observed at 0.1 mg L-1. This indicates that 
mild nanoparticle-induced stress can act as a trigger for astaxanthin 
overproduction. Conversely, higher concentrations (1.0 and 5.0 mg L-1) 
inhibited carotenoid accumulation, reducing astaxanthin content by 
~5% and ~26%, respectively.
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Figure 6. Astaxanthin (AST) and lipid content (% biomass) in Haematococcus lacustris  
at the aplanospore stage after exposure to 10 nm and 20 nm AgNPs (mg L-1).  

0 = control; mean ± SD (n = 3); * p < 0.05 vs. control.

For 20 nm AgNPs, the response pattern was different. Even at relative-
ly low concentrations (0.05–0.1 mg L-1), astaxanthin content already 
tended to decrease (by ~9–12%), and all concentrations from 0.5 to 
5.0 mg L-1 strongly suppressed astaxanthin formation, with reductions 
of ~42–56%. These findings indicate that, at the aplanospore stage, 10 
nm AgNPs at low–moderate doses can be exploited to enhance astax-
anthin production, while 20 nm particles are largely inhibitory across 
the tested range.

The lipid content of aplanospores was also strongly affected by  
AgNPs (Figure 6). In the presence of 10 nm nanoparticles, concentra-
tions between 0.01 and 0.5 mg L-1 markedly increased lipids, with 
rises of ~69–96% compared to the control, suggesting an intensified 
accumulation of energy-rich storage compounds in response to mild 
nanoparticle stress. At higher concentrations (1.0–5.0 mg L-1), lipid lev-
els declined by ~9–23%, paralleling the inhibition of astaxanthin.

For 20 nm AgNPs, lipid stimulation was restricted to the lowest con-
centrations (0.01–0.05 mg L-1), where increases of ~24–47% were ob-
served. At 0.5–5.0 mg L-1, lipid content decreased significantly, with 
reductions comparable to those seen for astaxanthin (about 9–23%).
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DISCUSSIONS
The present study analyzed the effects of silver nanoparticles on Hae-
matococcus lacustris at two key physiological stages – green vegetative 
cells and red aplanospores – to reveal stage-specific metabolic respons-
es and their relevance for astaxanthin and lipid production. Adminis-
tering 10 nm and 20 nm AgNPs at the onset of the green stage enabled 
the evaluation of nanoparticle action during intensive biosynthesis as 
well as during the subsequent stress-driven transition to the red stage.

A biphasic effect on biomass formation was observed. During the 
green stage, low and moderate AgNP concentrations (≤1 mg L-1) stim-
ulated biomass accumulation, whereas 5 mg L-1 inhibited growth. 
Comparable stimulatory effects of low AgNP doses have been report-
ed for Porphyridium purpureum and Chlamydomonas reinhardtii (25, 
26). However, inhibition of biomass formation is the predominant 
outcome described in the literature, especially at ≥1 mg L-1 AgNPs, 
as demonstrated for Nannochloropsis oculata, Dunaliella salina, and 
several filamentous green algae (27–29). The final biomass collected at 
the aplanospore stage was reduced at all AgNP doses, indicating that 
prolonged exposure, even at low levels, ultimately constrains culture 
productivity. This is consistent with reports highlighting the overall 
high toxicity of silver nanoparticles to microalgae (30).

In the green stage, H. lacustris showed enhanced protein and carbo-
hydrate content across nearly all treatments, pointing to intensified 
primary metabolism. Similar increases – interpreted as adaptive re-
sponses to moderate oxidative stress – were reported for Oedogonium, 
Ulothrix, Cladophora, and Spirogyra exposed to low AgNP concentra-
tions (33). In contrast to these species, where stress-induced accumu-
lation occurred alongside biomass inhibition, H. lacustris in our study 
exhibited metabolite increases associated with biomass stimulation, 
suggesting that the stress level induced by low–moderate AgNPs con-
centrations remained compensable during the vegetative stage.

Chlorophyll and carotenoids were more sensitive indicators of AgNP 
toxicity. Although pigment levels remained close to control values at 
≤0.5 mg L-1, clear declines occurred at 1–5 mg L-1 for both nanoparticle 
sizes, consistent with the well-documented suppression of photosyn-
thetic pigments under AgNP exposure (34, 35). The carotenoid-to-chlo-
rophyll ratio (Car/Chl), a marker of photosynthetic functionality, 
remained within the characteristic range for the green stage at 0.01–
0.5 mg L-1 AgNPs, confirming maintenance of primary metabolism un-
der low stress. In contrast, higher concentrations that reduced chlo-
rophyll also altered the Car/Chl ratio, indicating impaired pigment 
homeostasis.

Lipid content exhibited concentration-dependent stimulation in the 
green stage, reflecting adaptive remodeling of membrane systems un-
der stress, a phenomenon widely described for microalgae exposed 
to adverse conditions (8, 37, 38). The increase in lipids observed at 
both nanoparticle sizes suggests activation of compensatory respons-
es, while elevated MDA levels at ≥1 mg L-1 indicate that excessive 
nanoparticle doses trigger oxidative damage. The correlation between 
lipids and MDA supports this interpretation.
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At the aplanospore stage, the metabolic pattern changed. Low concen-
trations of 10 nm AgNPs stimulated astaxanthin accumulation, while 
higher doses inhibited it. Published data similarly describe both sup-
pressive and stimulatory effects of AgNPs on astaxanthin, depending 
on dose, exposure duration, and physiological state (21, 31). In our 
study, 20 nm AgNPs caused inhibition at nearly all concentrations, 
highlighting that nanoparticle size is an important determinant of 
stress sensitivity.

A strong positive correlation between total carotenoids (green stage) 
and astaxanthin (red stage) indicates that precursor availability in-
fluences final pigment accumulation. At the same time, the negative 
correlations between lipid content in green and red stages suggest 
dynamic redistribution of metabolic resources during stress adap-
tation. Lipids, which function as storage matrices for astaxanthin, 
showed a strong positive association with astaxanthin levels in the 
red stage, supporting the interdependence of these biosynthetic 
pathways.

Overall, the findings show that H. lacustris exhibited a clear hormetic 
response to silver nanoparticles. Low concentrations of 10 nm AgNPs 
enhanced biomass formation and stimulated the accumulation of pri-
mary metabolites, lipids, and astaxanthin, whereas higher doses sur-
passed the cellular tolerance threshold, resulting in pigment degrada-
tion, oxidative damage, and reduced astaxanthin synthesis. The ability 
of H. lacustris to withstand moderate stress and redirect its metabo-
lism toward protective and storage compounds, such as carotenoids 
and lipids, highlights its adaptive plasticity and suggests opportunities 
for controlled metabolic enhancement, provided nanoparticle expo-
sure remains within non-inhibitory ranges.

These stage-dependent responses underscore the importance of 
nanoparticle dose, size, and timing of application in determining 
whether their effects are stimulatory or toxic. 

CONCLUSIONS

1.	 This study has proved that silver nanoparticles induced distinct, 
stage-specific responses in Haematococcus lacustris, with direct impli-
cations for biomass accumulation, astaxanthin synthesis, and cellular 
metabolite profiles.

2.	 Low to moderate concentrations of 10 nm AgNPs stimulated biomass 
production during the green stage and enhanced lipid and astaxan-
thin accumulation during the red aplanospore stage, suggesting that 
controlled nanoparticle-induced stress can be exploited to boost valu-
able metabolites. In contrast, higher concentrations of 10 nm AgNPs 
and all tested doses of 20 nm AgNPs markedly suppressed biomass 
and astaxanthin production, indicating increased toxicity associated 
with larger particle size and elevated exposure levels.



www.bba.md

THE SCIENTIFIC JOURNAL 
OF THE MOLDAVIAN BIOSAFETY AND BIOSECURITY ASSOCIATION

71 January 2026  |  Volume 7  |  Issue 1

3.	 These findings confirmed a hormetic response, in which metabolic 
stimulation was restricted to a narrow exposure window, while ex-
cessive nanoparticle-induced oxidative stress led to inhibitory effects.

4.	 Overall, this knowledge has provided a scientific basis for developing 
controlled, nanoparticle-assisted strategies to enhance microalgal bi-
oproduct yields while minimizing adverse toxic effects.
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