BACTERIUM WITH LEUCONOSTOC PSEUDOMESENTEROIDES

Liviu IAROVOI1, Tiberiu HOLBAN1, Galina CHIRIACOV2, Viorica COTOS2, Lilia COJUHARI1, Natalia CÎRSTEA1

1Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, the Republic of Moldova
2Toma Ciorba Infectious Diseases Hospital, Chisinau, the Republic of Moldova

Corresponding author: Liviu Iarovoi, e-mail: liviu.iarovoi@usmf.md

DOI: 10.38045/ohrm.2023.1.10

Keywords: Leuconostoc pseudomesenteroides, congenital malformation, bacteremia, Vancomycin resistant, Amoxicillin clavulanate.

Introduction. Leuconostoc pseudomesenteroides until recently was classified as a commensal microorganism, but from 1985 until now several sporadic cases of infection with this pathogen have been described in humans. Bacteremia with Leuconostoc spp. are increasingly reported. Unique cases of infection of other sites have also been described. Most often, these cases have been reported in patients with cancer, and are often considered opportunistic for acquired immunodeficiencies. However, several cases have also been reported in immunocompetent patients.

Material and methods. An analysis of the literature and the clinical case are presented here: an 11-month-old child with congenital malformation – rabbit lip, who had pneumonia 2 months before his admission to the Toma Ciorba Infectious Diseases Clinical Hospital. Results. Meningococcemia and meningitis were clinically established upon admission. A few days later the blood culture result was with Leuconostoc pseudomesenteroides. The etiological treatment was corrected and the sterile result of the blood culture was obtained. The child was released in a satisfactory condition.

Conclusions. The clinical case presented is the first case of infection with Leuconostoc spp. described in the Republic of Moldova. The correct choice of the etiological treatment allows the eradication of this pathogen.

Cuvinte cheie: Leuconostoc pseudomesenteroides, malformatie congenitala, bacteriemie, Resistent la Vancomycin, Amoxicilina Clavulanate.

BACTERIEMIE CU LEUCONOSTOC PSEUDOMESENTEROIDES

Material și metode. Este prezentat o analiză a literaturii și un caz clinic al unui copil de 11 luni cu malformație congenitală – cheloschizis (buza de iepure), suportând pneumonia cu 2 luni înainte de internare.

Concluzii. Cazul clinic prezentat este primul caz de infecție cu Leuconostoc spp. descris în Republica Moldova. Alegerea corectă a tratamentului etiologic permite eradicarea acestui agent patogen.
L. – Leuconostoc; spp. – species; CNS – Central Nervous System; PMSI – Public Medical Sanitary Institution; IDCH – Infectious Diseases Clinical Hospital; SpO2 – peripheral blood oxygen saturation; ESR – erythrocyte sedimentation rate, ALT – alanine aminotransferase; AST – aspartate aminotransferase, Anti-CMV-IgG – Antibodies Immunoglobulin G to Cytomegalovirus, Anti-CMV IgM – Antibodies Immunoglobulin M to Cytomegalovirus, HBsAg – Hepatitis B surface antigen, anti-HCVsum – summary antibodies to the hepatitis C virus, B/P – blood pressure, CSF – cerebrospinal fluid.

INTRODUCTION

Streptococcus-like bacteria of the genus L. (*Leuconostoc*) were isolated in humans for the first time by Handwerger in the mid-80s of the last century. *Leuconostoc* spp. are facultative anaerobic, gram-positive, catalase-negative, non-spore-forming, motile, heterofermentative cocci widely distributed in the environment, including soil and plants (1).

The genus *Leuconostoc* includes the “typical representative” *L. mesenteroides* and 8 “minor” species, including *L. pseudomesenteroides*. Members of the genus *Leuconostoc* are more of an economic importance, as they are used in the manufacture of dairy products and wine. The first suspected case of human infection with *Leuconostoc* spp. was recorded in 1985 (2). Until then, *Leuconostoc* species were considered non-pathogenic for humans. Since 1985, infections caused by *Leuconostoc* have been reported more frequently (3-5), becoming more and more important as opportunistic pathogens of immunodeficiency states (6-8). For example, a South Korean study describes 6 cases of bacteremia with *Leuconostoc* in patients over 60 years old, with aggravating underlying diseases. Within 30 days of the identification of the bacteria, four of these 6 patients died (9).

At the same time, cases have also been described in immunocompetent patients. For example, secondary infection with *Leuconostoc* spp. following the application of a patch with plant components on the wound of a patient with amputation (10), or purulent meningitis caused by *Leuconostoc* spp. in a previously healthy patient (4), or bacteremia with the same pathogen in an immunocompetent patient suffering from Chagas disease (11), etc.

Leuconostoc infections often occur in patients whose underlying diseases are treated with vancomycin (12, 14). There are described cases of isolation of *Leuconostoc* spp. from the blood of patients with malignant neoplasms and long-term catheterization, as well as from the removal of infected wounds, in postoperative infections and in odontogenic abscesses (4, 12, 15-17). Pulmonary infection with *Leuconostoc* in a patient with lymphoma is also described (18). Xinfeng Lin and co-authors (19) in his paper associated hemophagocytic syndrome with *Leuconostoc pseudomesenteroides* infection in an adult patient.

Central Nervous System (CNS) infections caused by *Leuconostoc* spp. are extremely rare. Most often they are associated with a deficient immune field, such as, for example, purulent meningitis with *Leuconostoc* spp. in newborns (20, 21). A case of nosocomial meningitis caused by *Leuconostoc* spp. has been described in connection with the use of a catheter with an extra-ventricular drainage system due to the presence of a thalamic hematoma with ventricular extension (2). Ventriculitis and brain abscess have also been described in CNS infections with *Leuconostoc* spp (22, 23).

Several cases of *L. mesenteroides* bacteremia associated with the use of oral dietary supplements for children have been reported (3). Other additional factors that predispose to infection are: prolonged treatment in the hospital, the use of devices that violate the integrity of the skin and mucous membranes (venous catheters, gastro- or tracheostomy, drainage fistulas), extensive surgical interventions, decreased intestinal barrier function, antibiotic therapy with drugs that are not sufficiently active against *Leuconostoc* spp. (3, 5-7, 24).

It must be recognized that infectious diseases caused by *Leuconostoc* spp. are rare. This is also due to the lack of practice of its isolation. *Leuconostoc* spp. can be taken into consideration only in the case of isolation from obviously sterile sources (blood, cerebrospinal fluid, peritoneal and joint fluids), ob serving all the rules of asepsis. If *Leuconostoc* is found in material with a high risk of external contamination (for example, in the wound exudate), its presence is significant.
only if no other more virulent microorganisms are found or if Leuconostoc is isolated in large quantities in several analysis of the sampled material (5, 6).

The complexity of identifying the microorganism is associated with the similarity of some of its properties with other, more frequently detected bacteria – *pneumococci*, *streptococci* and lactobacilli. These similarities can cause misidentification (25). The natural resistance of *Leuconostoc spp.* to vancomycin allows its rapid differentiation from most other streptococcal bacteria, except *Pediococcus spp.* and certain vancomycin-resistant strains of *Enterococci*. At the same time, carrying out tests using leucine aminopeptidase and pyrodnylanlamaridase allows the differentiation of *Leuconostoc spp.* with *Pediococcus spp.* and vancomycin-resistant *Enterococci* (26). In recent years, automated microbiological analyzers have been successfully used to confirm *Leuconostoc* bacteremia (27).

Leuconostoc is one of the few Gram-positive bacteria, including *Pediococcus spp.*, *Lactobacillus spp.*, *Erysipelothrix*, *enterococci*, naturally resistant to glycopeptide antibiotics – vancomycin and teicoplanin. However, despite resistance to glycopeptides, *Leuconostoc spp.* is sensitive to most antibiotics active against *streptococci*. Thus, *Leuconostoc* is usually sensitive to penicillin, ampicillin, clindamycin, erythromycin and fosfomycin. Moderate activity is shown by imipenem, cephalosporins, tetracyclines and chloramphenicol (6, 25). Clinical data, extremely limited in number, indicate that apparently the antibiotics of choice for the treatment of infections caused by *Leuconostoc spp.* are penicillin and ampicillin (5, 25).

CASE PRESENTATION

Patient V.D., 11 months old, was admitted to PMSI IDCH "Toma Ciorba" on 05.01.2022. When the patient was admitted, the following anamnestic data were found:

- Heredo-collateral antecedents: born with a congenital malformation – rabbit lip with a defect of the hard and soft palate, at 39 weeks, weighing 2970 gr.; was abandoned by parents (disenfranchised).
- Medical history: underwent 2 facial surgeries, performed at PMSI "E. Cotaga"; in November-December 2021 – pneumonia; until the age of 9 months showing retardation in physical development, not sitting on their own.
- Living conditions: being adopted, he lives in a family that takes care of him; sufficient nutrition (quantitative and qualitative).

Epidemiological anamnesis: in the adoptive family there are children who previously (December 2021 – January 2022) showed signs of acute respiratory infection with cough, rhinorrhea and pain in the pharynx.

The history of the disease: considered sick since 03.01.2022, when fever up to 39.0°C appeared, liquid stool 3 times a day, general weakness, lack of appetite. The child caregiver administered oral antipyretics. On 04.01.22 the caregiver noticed the appearance of a punctate rash on the left buttock. The liquid stool did not recur, but the fever remained up to 39.5°C. On 05.01.22 multiple punctate eruptions appeared on the lower limbs, the fever continued to persist. The child caregiver requested Urgent Medical Assistance, after which the child was hospitalized with suspicion of meningococcal infection at PMSI Ungheni District Hospital, where he was administered sol. Levomycetin 250 mg and Ringer infusion i/v 100 ml. On the same day, the child was transported to PMSI IDCH "Toma Ciorba" for diagnostic evaluation and treatment.

Clinical examination: serious general condition, body temperature – 37.4°C, drinks very little, with difficulty; punctate and stellate hemorrhagic eruptions located on the lower limbs and in the lower abdomen, two elements – on the buttocks in the resorption phase; oral cavity – rabbit lip with hard and soft palate defect, slightly hyperemic oropharynx; dear consciousness, tracks objects, sleeps intermittently, suspects occipital stiffness; breathing rate – 26/min, SpO2 – 97%, heart rate = 120/min, T/A = 95/65 mmHg.

The presumptive diagnosis was established: Meningococcal infection. Meningococcemia. Meningococcal meningitis. Lumbar puncture was performed with cerebrospinal fluid sampling. Blood, urine, cerebrospinal fluid, pharyngeal smears and eruptive elements were taken for bacteriological investigations.

The antibiotic treatment was continued with ceftriaxone, the pathogenetic one included dexamethasone. In continuation, the improvement
of the general condition of the child, the normalization of the body temperature was confirmed. Nonspecific paraclinical investigations during treatment were as follows (tab. 1, 2):

Table 1. Blood count in dynamics.

<table>
<thead>
<tr>
<th>Indicators / data</th>
<th>06.01.22</th>
<th>10.01.22</th>
<th>14.01.22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin (g/L)</td>
<td>94↓</td>
<td>114</td>
<td>108↓</td>
</tr>
<tr>
<td>Erythrocytes (10^{12}/L)</td>
<td>4.21</td>
<td>5.23↑</td>
<td>4.81</td>
</tr>
<tr>
<td>Platelets (10^{9}/L)</td>
<td>285</td>
<td>521↑</td>
<td>586↑</td>
</tr>
<tr>
<td>Leukocytes (10^{9}/L)</td>
<td>25.74↑</td>
<td>20.57↑</td>
<td>15.96↑</td>
</tr>
<tr>
<td>Unsegmented (%)</td>
<td>48↑</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Segmented (%)</td>
<td>21</td>
<td>27</td>
<td>10</td>
</tr>
<tr>
<td>Eosinophils (%)</td>
<td>0↓</td>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>Lymphocytes (%)</td>
<td>25↓</td>
<td>54</td>
<td>65</td>
</tr>
<tr>
<td>Monocytes (%)</td>
<td>2.9</td>
<td>11.5</td>
<td>15↑</td>
</tr>
<tr>
<td>ESR (mm/h)</td>
<td>22↑</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 2. Biochemical analysis of blood in dynamics.

<table>
<thead>
<tr>
<th>Indicators / data</th>
<th>06.01.22</th>
<th>10.01.22</th>
<th>14.01.22</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT (U/L)</td>
<td>251.9↑</td>
<td>101.8↑</td>
<td>78.7↑</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>78.7↑</td>
<td>38.3</td>
<td>50.0↑</td>
</tr>
<tr>
<td>Urea (mmol/L)</td>
<td>4.81</td>
<td>5.20</td>
<td></td>
</tr>
<tr>
<td>Creatinine (mmol/L)</td>
<td>36↑</td>
<td>59↑</td>
<td>73↑</td>
</tr>
<tr>
<td>Glucose (mmol/L)</td>
<td>8.61↑</td>
<td>5.43</td>
<td>4.45</td>
</tr>
<tr>
<td>Amylase (U/L)</td>
<td>13↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prothrombin index (%)</td>
<td>97</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CSF from 06.01.22: slightly cloudy; Pandy's reaction – positive (+); cytosis – 37 cells/mcl, neutrophils – 55%, lymphocytes – 45%, protein – 0.33 g/L; unchanged erythrocytes – moderate amount; chlorides – 128.8 mmol/L; glucose – 5.80 mmol/L.

Specific immunological paraclinical investigations (10.01.22): Anti-CMV-IgG – positive; Anti CMV IgM – positive; HBsAg – negative; anti-HCVsum – negative.

The bacterioscopic and bacteriological results of the cerebrospinal fluid, from the eruptions, from the pharynx, on the background of antibacterial therapy, were negative.

Bacteriological investigation of urine from 10.01.22: Candida albicans (susceptible to clotrimoxazole, fluconazole, ketokonazol, nystatin, etc.).

On 12.01.22, the preventive result of the bacteriological investigation of the blood, taken on 06.01.22, was received, with the finding of an increase in the broth of gram-positive, catalase-negative cocci flora. To determine the germ, the automatic microbiological analyzer Vitek 2 was used: identified Leuconostoc pseudomesenteroides, sensitive to ampicillin, azithromycin, cefepime, chloramphenicol, clarithromycin, erythromycin, norfloxacin, tetracycline; intermediate sensitivity to ciprofloxacin, levofloxacin; resistant to cefotaxime, clindamycin, cotrimoxazole, vancomycin.

Considering the result of the blood culture and anti-CMV-IgM – positive, the decision was made to change the etiotropic treatment, namely: cancellation of treatment with Ceftriaxone, indicating Amoxicillin clavulanate and Viferon. In continuation, the child remained afebrile, became active, with improvement in appetite and sleep,
without finding deviations from normal during the objective examination. On 14.01.22, blood was taken for the repeated investigation of sterility; the result – negative. On the same date, the patient was discharged home in satisfactory condition.

DISCUSSIONS

Infections caused by *Leuconostoc spp.* are poorly studied. Available literature data allows reconsideration of its relationship with the human body. Thus, at present, *Leuconostoc spp.* can be considered pathogenic for humans. The clinical case presented is of a child, presumed immunocompromised, confirmed with bacteremia with *Leuconostoc pseudomesenteroides*, which was associated with meningococcal infection with meningococemia and meningococcal meningitis, on the background of *Cytomegalovirus* infection in reactivation and immunosuppression. The timely choice of etiological treatment in the case of identification of *Leuconostoc spp.* is a necessary condition for obtaining a positive clinical result.

CONCLUSIONS

1. The presented clinical case is the first case of infection with *Leuconostoc spp.* described in the Republic of Moldova.
2. The correct choice of etiological treatment allows the eradication of infection with *Leuconostoc spp.*

CONFLICT OF INTERESTS

The authors have no conflict of interest to declare.

REFERENCES

Date of receipt of the manuscript: 26/04/2022
Date of acceptance for publication: 30/12/2022

Liviu IAROVOI, WoS Researcher ID: AAE-3006-2022; SCOPUS Author ID: 57217016183
Tiberiu HOLBAN, WoS Researcher ID: AEJ-5974-2022; SCOPUS Author ID: 57193832267
Lilia COJUHARI, WoS Researcher ID: ABE-8983-2021; SCOPUS Author ID: 57196474119